A High-efficiency Compact SiC-based Power Converter System

Timothy Lin

Aegis Technology Inc. 3300 A Westminster Ave., Santa Ana, CA 92703

STTR (DE-FG02-05ER86234), Energy Storage Program, Department of Energy

Research Institute: The University of Tennessee, Knoxville
Technical Supervisor: Stanley Atcitty, Sandia National Laboratories

Part 1. Aegis Technology

- A high-technology company with design, development and manufacturing capabilities
- Operation since 2002 currently with 4 Ph.D/M.S Scientists/engineers and 10 employee

Company located at a modern industry park in Santa Ana, CA, 10 miles away from University of California, Irvine

Development and fabrication in: a) thermal management & high-temperature power electronics; b) composites (e.g. nanocomposite)

Capabilities

Facilities

- 1. Vacuum and controlled-atmosphere furnace
- 2. Screen printer
- 3. Wire bonder
- 4. Isotemp oven
- 5. Air furnace
- 6. Glovebox system
- 7. Degassing system
- 8. Attritor system
- 9. Hot isostatic press

- 10. Universal mechanical test
- 11. Ultrasonic cleaner, air compressor and a variety of meters and tools
- 12. Computer systems with FEA and AutoCAD software

Part II. DoE STTR — A High-efficiency Compact SiC-based Power Converter System

Objective & Approach

- Develop a high-efficiency compact power inverter based on SiCbased semiconductor technology
 - High efficiency, small size, and light weight
 - High power density, high temperature, and high frequency
 - Scalable current ratings and power levels
- Address associated technical issues and supporting technologies
 - Design, modeling and simulation
 - Power modules by paralleling multiple SiC devices
 - High-temperature package and thermal management
 - High-frequency gate driver suitable for SiC power devices
- Integrate the technologies for demonstration/test of a SiC inverter that can operate at high junction/environment temperatures
 - Analyze the benefits of using SiC power devices in a systematic level
 - Explore potential applications (e.g. electric energy storage)

Outline of Approach and Applications

Phase I Accomplishment -Feasibility Study

Phase I project investigated the feasibility of a SiC-based semiconductor technology with a focus on supporting technologies:

- SiC Power module (parallel SiC devices),
- modeling and simulation,
- thermal packaging,
- gate drive

Power module design, prototype and test

- Design and built two kinds of SiC power modules using SiC diode (1200 V, 15 A) and JFET in parallel (2x 1200 V, 7A), half-bridge and six-packed
- Characterize power modules

Modeling and simulation of inverter

- Inverter performance to investigate the device-level and system-level impart
- Energy efficiency and heatsink size

Thermal management

- High temperature AlN package
- High efficiency heatsink (graphite foam for air cooling, microchannel for liquid cooling)

Gate drive

Select commercially available design and modify for SiC devices

Phase I Accomplishment - Hardware & Design

Power module

Thermal management

Testing setup

Phase I Accomplishment - Modeling

An inverter is interfaced with:

- A large battery bank for energy storage.
- An AC system.

A Hawker Genesis battery (13Ah, 12V) and its equivalent circuit for the simulation.

Phase I Accomplishment (cont.)-Modeling

Inverter (1200 V, 20 A)	JEFT/IGBT temperature rise (C)	Diode temperature rise (C)	Total power losses (W)	Efficiency (%)	Power loss percentage (%)	Heatsink (in ³): Natural convection
	Peak (Ave.)	Peak (Ave.)	Peak (Ave.)	Lowest (Ave.)	Largest (Ave.)	Thermaflo E1353
Si	109 (101)	125 (116)	311 (288)	95.6 (95.9)	4.6 (4.1)	140.1
SiC	123 (110)	121 (108)	175 (153)	97.6 (97.8)	2.4 (2.2)	25.4
SiC	171 (146)	169 (143)	271 (223)	96.1 (96.8)	3.9 (3.2)	17.9

Inverter (1200 V , 120 A)	JEFT/IGBT temperature rise (C)	Diode temperature rise (C)	Total Power losses (W)	Efficiency (%)	Power loss percentage (%)	Heatsink (in³): Forced convection (6.1 m/s)
	Peak (Ave.)	Peak (Ave.)	Peak (Ave.)	Lowest (Ave.)	Largest (Ave.)	Thermaflo E1357
Si	109 (100)	124 (113)	3658 (3309)	96.2 (96.5)	3.8 (3.5)	423.3
SiC	124 (115)	121 (108)	545 (490)	99.4 (99.5)	0.6 (0.5)	5.75
SiC	175 (154)	169 (143)	690 (594)	99.3 (98.4)	0.7 (1.6)	3.75

Primary simulation results in the discharging state of battery system

Phase I Accomplishment (cont.)-Modeling

Simulation in one discharge/charge cycle

Inverter (1200 V, 20A)	JEFT/IGBT temperature rise (C)	JEFT/IGBT temperature rise (C)	Diode temperature rise (C)	Total power losses (W)	Efficiency (%)	Power loss percentage (%)
	Peak (Ave.)	Peak (Ave.)	Peak (Ave.)	Peak (Ave.)	Lowest (Ave.)	Largest (Ave.)
Discharge	Si	109 (101)	125 (116)	311 (288)	95.7 (95.9)	4.6 (4.1)
	SiC	54 (51)	52 (49)	112 (105)	98.4 (98.5)	1.6 (1.5)
Charge	Si	99 (62)	117 (72)	311 (288)	95.6 (95.9)	4.6 (4.1)
	SiC	49 (35)	48 (34)	99 (32)	98.6(99.3)	1.4 (0.7)

Item in simulation	Voltage rating	Current rating	Part number
SiC JFETs	1200 V	(7A×2) ×2	SiCED
SiC Schottky diodes	1200 V	15A ×2	SiCED
Si IGBTs Module	600 V	21A×2	SK 25GB 065 (Semikron)

Phase I Accomplishment -Testing Result

Turn-on transition

Turn-off transition

Recovery

Phase II Work Scope- System integration, scaling up and demonstration

- Converter fabrication and characterization
 - Utilize technology/components currently available or demonstrated in Phase I
 - A power module array (1200V, 120 A) by paralleling module units of 1200 V, 20 A
 - Gate drive (Honeywell SOI-based high temperature drive)
 - High- temperature thermal packaging
 - Fabricate, test and characterize inverter
- Modeling and system analysis
 - Analyze the device/system-level impacts of the SiC inverter with similar Si inverter
 - Advantages of operations at high temperatures (smaller heatsink), power densities and frequencies (smaller passive component)
 - Technical/economical benefits in terms of efficiency, size and cost
- Application and commercialization
 - Electric storage system (battery, capacitors)
 - Transportation (traction drive, hybrid electric vehicles)
 - Power systems (Fuel cells, micro turbine, nuclear energy, and renewable sources)
 - Document the benefits in terms of performance and costs for potential customers
- Teaming with Powerex for production/commercialization
 - SiC power modules and converters

Through this project, a high-efficiency compact affordable SiC inverter can be anticipated

Phase II Work Being Accomplished

- Contract initiated at October 2006
- Design of power module
 - Paralleling of multiple devices for a unit of power
 - Paralleling of multiple modules for a power module array
- Design of gate drive based on SOI technology
- Procurement of SiC power devices
- Fabrication of SiC/Al composite and Metallization of AlN for thermal packaging
- Establishment of a commercial partner, Powerex Inc. (Youngwood, PA) for SiC-based power electronics

Phase II Work Ongoing

- Device

Procure and characterize commercially available SiC devices

- Circuit

- Design suitable SiC circuits of power modules
- Power modules through Device paralleling
- Modeling and simulation
- Thermal testing of modules
- Package (thermal management) and gate drive
 - Develop high temperature package, high-efficiency heatsink
 - Develop high temperature gate drive
- System integration/demonstration/testing/applications
 - Select high temperature auxiliary devices/components (capacitor etc.)
 - Document the system impacts of using SiC devices
 - Approaching potential customers

Acknowledgement

- This project is sponsored by Energy Storage Program,
 U.S. Department of Energy
- DoE STTR project Phase I and ongoing Phase II (DE-FG02-05ER86234)
- Special thanks extend to
 - Dr. Imre Gyuk, Manager, Energy Storage Program,
 U.S. Department of Energy
 - Mr. Stanley Atcitty, Senior Member of Technical Staff, Sandia National Laboratories